Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Am J Clin Nutr ; 119(5): 1227-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484975

RESUMO

BACKGROUND: Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES: We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS: We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS: Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION: Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.


Assuntos
Estudo de Associação Genômica Ampla , Pulmão , Testes de Função Respiratória , Vitamina D , Vitamina D/análogos & derivados , Humanos , Vitamina D/sangue , Pulmão/fisiologia , Feminino , Masculino , Loci Gênicos , Pessoa de Meia-Idade , Reino Unido , Polimorfismo de Nucleotídeo Único , Idoso , Volume Expiratório Forçado , Capacidade Vital/genética
2.
Nat Commun ; 15(1): 542, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228644

RESUMO

Limited understanding of the immunopathogenesis of human herpesvirus 6B (HHV-6B) has prevented its acceptance as a pulmonary pathogen after hematopoietic cell transplant (HCT). In this prospective multicenter study of patients undergoing bronchoalveolar lavage (BAL) for pneumonia after allogeneic HCT, we test blood and BAL fluid (BALF) for HHV-6B DNA and mRNA transcripts associated with lytic infection and perform RNA-seq on paired blood. Among 116 participants, HHV-6B DNA is detected in 37% of BALs, 49% of which also have HHV-6B mRNA detection. We establish HHV-6B DNA viral load thresholds in BALF that are highly predictive of HHV-6B mRNA detection and associated with increased risk for overall mortality and death from respiratory failure. Participants with HHV-6B DNA in BALF exhibit distinct host gene expression signatures, notable for enriched interferon signaling pathways in participants clinically diagnosed with idiopathic pneumonia. These data implicate HHV-6B as a pulmonary pathogen after allogeneic HCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 6 , Pneumonia , Infecções por Roseolovirus , Humanos , Herpesvirus Humano 6/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Estudos Prospectivos , Infecções por Roseolovirus/genética , Transcriptoma , DNA , Pneumonia/complicações , RNA Mensageiro
3.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226418

RESUMO

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Assuntos
Antineoplásicos , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Ratos , Cálcio/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/metabolismo
4.
Am J Respir Crit Care Med ; 208(8): 846-857, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37470492

RESUMO

Rationale: Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have antiinflammatory properties and may benefit lung health. Objectives: To investigate associations of omega-3 fatty acids with lung function decline and incident airway obstruction in a diverse sample of adults from general-population cohorts. Methods: Complementary study designs: 1) longitudinal study of plasma phospholipid omega-3 fatty acids and repeated FEV1 and FVC measures in the NHLBI Pooled Cohorts Study and 2) two-sample Mendelian randomization (MR) study of genetically predicted omega-3 fatty acids and lung function parameters. Measurements and Main Results: The longitudinal study found that higher omega-3 fatty acid levels were associated with attenuated lung function decline in 15,063 participants, with the largest effect sizes for the most metabolically downstream omega-3 fatty acid, docosahexaenoic acid (DHA). An increase in DHA of 1% of total fatty acids was associated with attenuations of 1.4 ml/yr for FEV1 (95% confidence interval [CI], 1.1-1.8) and 2.0 ml/yr for FVC (95% CI, 1.6-2.4) and a 7% lower incidence of spirometry-defined airway obstruction (95% CI, 0.89-0.97). DHA associations persisted across sexes and smoking histories and in Black, White, and Hispanic participants, with associations of the largest magnitude in former smokers and Hispanic participants. The MR study showed similar trends toward positive associations of genetically predicted downstream omega-3 fatty acids with FEV1 and FVC. Conclusions: The longitudinal and MR studies provide evidence supporting beneficial effects of higher levels of downstream omega-3 fatty acids, especially DHA, on lung health.


Assuntos
Obstrução das Vias Respiratórias , Ácidos Graxos Ômega-3 , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Estudos Longitudinais , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética , Ácidos Docosa-Hexaenoicos
5.
Am J Respir Crit Care Med ; 207(12): 1565-1575, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212596

RESUMO

Rationale: Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. Objectives: To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). Methods: RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB (n = 11) and without EIB (n = 9). Differentially expressed genes (DEGs) between the groups were correlated with measures of airway physiology, sputum inflammatory markers, and airway wall immunopathology. On the basis of these relationships, we examined the effects of primary airway epithelial cells (AECs) and specific epithelial cell-derived cytokines on both mast cells (MCs) and eosinophils (EOS). Measurements and Main Results: We identified 120 DEGs in individuals with and without EIB. Network analyses suggested critical roles for IL-33-, IL-18-, and IFN-γ-related signaling among these DEGs. IL1RL1 expression was positively correlated with the density of MCs in the epithelial compartment, and IL1RL1, IL18R1, and IFNG were positively correlated with the density of intraepithelial EOS. Subsequent ex vivo modeling demonstrated that AECs promote sustained type 2 (T2) inflammation in MCs and enhance IL-33-induced T2 gene expression. Furthermore, EOS increase the expression of IFNG and IL13 in response to both IL-18 and IL-33 as well as exposure to AECs. Conclusions: Circuits involving epithelial interactions with MCs and EOS are closely associated with indirect AHR. Ex vivo modeling indicates that epithelial-dependent regulation of these innate cells may be critical in indirect AHR and modulating T2 and non-T2 inflammation in asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Interleucina-18 , Interleucina-33/genética , Células Epiteliais/patologia , Inflamação , Imunidade Inata
6.
Nat Genet ; 55(3): 410-422, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914875

RESUMO

Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos , Fumar/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L335-L344, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719987

RESUMO

Nephronectin (NPNT) is a basement membrane (BM) protein and high-affinity ligand of integrin α8ß1 that is required for kidney morphogenesis in mice. In the lung, NPNT also localizes to BMs, but its potential role in pulmonary development has not been investigated. Mice with a floxed Npnt allele were used to generate global knockouts (KOs). Staged embryos were obtained by timed matings of heterozygotes and lungs were isolated for analysis. Although primary and secondary lung bud formation was normal in KO embryos, fusion of right lung lobes, primarily the medial and caudal, was first detected at E13.5 and persisted into adulthood. The lung parenchyma of KO mice was indistinguishable from wild-type (WT) and lobe fusion did not alter respiratory mechanics in adult KO mice. Interrogation of an existing single-cell RNA-seq atlas of embryonic and adult mouse lungs identified Npnt transcripts in mesothelial cells at E12.5 and into the early postnatal period, but not in adult lungs. KO embryonic lungs exhibited increased expression of laminin α5 and deposition of collagen IV in the mesothelial BM, accompanied by abnormalities in collagen fibrils in the adjacent stroma. Cranial and accessory lobes extracted from KO embryonic lungs fused ex vivo when cultured in juxtaposition, with the area of fusion showing loss of the mesothelial marker Wilms tumor 1. Because a similar pattern of lobe fusion was previously observed in integrin α8 KO embryos, our results suggest that NPNT signaling through integrin α8, likely in the visceral pleura, maintains right lung lobe separation during embryogenesis.


Assuntos
Proteínas da Matriz Extracelular , Proteínas de Membrana , Animais , Camundongos , Proteínas da Matriz Extracelular/genética , Desenvolvimento Embrionário/genética , Pulmão/metabolismo , Colágeno
8.
medRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711663

RESUMO

Rationale: Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have anti-inflammatory properties and may benefit lung health. Objectives: Investigate associations of omega-3 fatty acids with lung function decline and incident airway obstruction in adults of diverse races/ethnicities from general population cohorts. Methods: Complementary study designs: (1) longitudinal study of plasma phospholipid omega-3 fatty acids and repeated FEV 1 and FVC measures in the National Heart, Lung, and Blood Institute Pooled Cohorts Study, and (2) two-sample Mendelian Randomization (MR) study of genetically predicted omega-3 fatty acids and lung function parameters. Measurements and Main Results: The longitudinal study found that higher omega-3 fatty acid concentrations were associated with attenuated lung function decline in 15,063 participants, with the largest effect sizes for docosahexaenoic acid (DHA). One standard deviation higher DHA was associated with an attenuation of 1.8 mL/year for FEV 1 (95% confidence interval [CI] 1.3-2.2) and 2.4 mL/year for FVC (95% CI 1.9-3.0). One standard deviation higher DHA was also associated with a 9% lower incidence of spirometry-defined airway obstruction (95% CI 0.86-0.97). DHA associations persisted across sexes, smoking histories, and Black, white and Hispanic participants, with the largest magnitude associations in former smokers and Hispanics. The MR study showed positive associations of genetically predicted omega-3 fatty acids with FEV 1 and FVC, with statistically significant findings across multiple MR methods. Conclusions: The longitudinal and MR studies provide evidence supporting beneficial effects of higher circulating omega-3 fatty acids, especially DHA, on lung health.

9.
Nat Genet ; 55(2): 291-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702996

RESUMO

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.


Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Humanos , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Uso de Tabaco , Biologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
10.
J Allergy Clin Immunol ; 151(6): 1484-1493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36708815

RESUMO

BACKGROUND: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses. OBJECTIVE: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection. METHODS: Primary AECs were obtained from 11 children with asthma and 10 healthy children, differentiated at air-liquid interface, and cultured in the presence of laboratory of allergic diseases 2 (LAD2) MCs. AECs were infected with rhinovirus serogroup A 16 (RV16) for 48 hours. RNA isolated from both AECs and MCs underwent RNA sequencing. Direct effects of epithelial-derived interferons on LAD2 MCs were examined by real-time quantitative PCR. RESULTS: MCs increased expression of proinflammatory and antiviral genes in AECs. AECs demonstrated a robust antiviral response after RV16 infection that resulted in significant changes in MC gene expression, including upregulation of genes involved in antiviral responses, leukocyte activation, and type 2 inflammation. Subsequent ex vivo modeling demonstrated that IFN-ß induces MC type 2 gene expression. The effects of AEC donor phenotype were small relative to the effects of viral infection and the presence of MCs. CONCLUSIONS: There is significant cross talk between AECs and MCs, which are present in the epithelium in asthma. Epithelial-derived interferons not only play a role in viral suppression but also further alter MC immune responses including specific type 2 genes.


Assuntos
Asma , Infecções por Enterovirus , Infecções por Picornaviridae , Criança , Humanos , Interferons , Rhinovirus/fisiologia , Mastócitos/metabolismo , Epitélio/metabolismo , Células Epiteliais , Antivirais/farmacologia , Imunidade
11.
Nat Hum Behav ; 6(11): 1577-1586, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35927319

RESUMO

Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Fumar/genética
12.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385699

RESUMO

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Pulmão , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco , Estados Unidos/epidemiologia
13.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L607-L616, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196901

RESUMO

We previously showed that pericyte-like cells derived from the FoxD1-lineage contribute to myofibroblasts following bleomycin-induced lung injury. However, their functional significance in lung fibrosis remains unknown. In this study, we used a model of lung pericyte-like cell ablation to test the hypothesis that pericyte-like cell ablation attenuates lung fibrosis in bleomycin-induced lung injury. Lung fibrosis was induced by intratracheal instillation of bleomycin. To ablate pericyte-like cells in the lung, diphtheria toxin (DT) was administered to Foxd1-Cre;Rosa26-iDTR mice at two different phases of bleomycin-induced lung injury. For early ablation, we coadministered bleomycin with DT and harvested mice at days 7 and 21. To test the effect of ablation after acute injury, we delivered DT 7 days after bleomycin administration. We assessed fibrosis by lung hydroxyproline content and semiquantitative analysis of picrosirius red staining. We performed bronchoalveolar lavage to determine cell count and differential. We also interrogated mRNA expression of fibrosis-related genes in whole lung RNA. Compared with DT-insensitive littermates where pericyte-like cells were not ablated, DT-sensitive animals exhibited no difference in fibrosis at day 21 both in the early and late pericyte ablation models. However, early ablation of pericytes reduced acute lung inflammation, as indicated by decreased inflammatory cells. Our data confirm a role for pericytes in regulating pulmonary inflammation in early lung injury.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Animais , Bleomicina/farmacologia , Líquido da Lavagem Broncoalveolar , Hidroxiprolina , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Lesão Pulmonar/terapia , Camundongos , Camundongos Endogâmicos C57BL , Pericitos/metabolismo , Fibrose Pulmonar/patologia
14.
Chest ; 161(5): 1155-1166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104449

RESUMO

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/diagnóstico , Estudo de Associação Genômica Ampla , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética
16.
Blood ; 139(3): 357-368, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855941

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Assuntos
Hematopoiese Clonal , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Razão de Chances , Doença Pulmonar Obstrutiva Crônica/etiologia , Fatores de Risco , Fumar/efeitos adversos , Sequenciamento do Exoma
17.
JAMA ; 326(22): 2287-2298, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905031

RESUMO

Importance: Chronic lung diseases are a leading cause of morbidity and mortality. Unlike chronic obstructive pulmonary disease, clinical outcomes associated with proportional reductions in expiratory lung volumes without obstruction, otherwise known as preserved ratio impaired spirometry (PRISm), are poorly understood. Objective: To examine the prevalence, correlates, and clinical outcomes associated with PRISm in US adults. Design, Setting, and Participants: The National Heart, Lung, and Blood Institute (NHLBI) Pooled Cohorts Study was a retrospective study with harmonized pooled data from 9 US general population-based cohorts (enrollment, 65 251 participants aged 18 to 102 years of whom 53 701 participants had valid baseline lung function) conducted from 1971-2011 (final follow-up, December 2018). Exposures: Participants were categorized into mutually exclusive groups by baseline lung function. PRISm was defined as the ratio of forced expiratory volume in the first second to forced vital capacity (FEV1:FVC) greater than or equal to 0.70 and FEV1 less than 80% predicted; obstructive spirometry FEV1:FVC ratio of less than 0.70; and normal spirometry FEV1:FVC ratio greater than or equal to 0.7 and FEV1 greater than or equal to 80% predicted. Main Outcomes and Measures: Main outcomes were all-cause mortality, respiratory-related mortality, coronary heart disease (CHD)-related mortality, respiratory-related events (hospitalizations and mortality), and CHD-related events (hospitalizations and mortality) classified by adjudication or validated administrative criteria. Absolute risks were adjusted for age and smoking status. Poisson and Cox proportional hazards models comparing PRISm vs normal spirometry were adjusted for age, sex, race and ethnicity, education, body mass index, smoking status, cohort, and comorbidities. Results: Among all participants (mean [SD] age, 53.2 [15.8] years, 56.4% women, 48.5% never-smokers), 4582 (8.5%) had PRISm. The presence of PRISm relative to normal spirometry was significantly associated with obesity (prevalence, 48.3% vs 31.4%; prevalence ratio [PR], 1.68 [95% CI, 1.55-1.82]), underweight (prevalence, 1.4% vs 1.0%; PR, 2.20 [95% CI, 1.72-2.82]), female sex (prevalence, 60.3% vs 59.0%; PR, 1.07 [95% CI, 1.01-1.13]), and current smoking (prevalence, 25.2% vs 17.5%; PR, 1.33 [95% CI, 1.22-1.45]). PRISm, compared with normal spirometry, was significantly associated with greater all-cause mortality (29.6/1000 person-years vs 18.0/1000 person-years; difference, 11.6/1000 person-years [95% CI, 10.0-13.1]; adjusted hazard ratio [HR], 1.50 [95% CI, 1.42-1.59]), respiratory-related mortality (2.1/1000 person-years vs 1.0/1000 person-years; difference, 1.1/1000 person-years [95% CI, 0.7-1.6]; adjusted HR, 1.95 [95% CI, 1.54-2.48]), CHD-related mortality (5.4/1000 person-years vs 2.6/1000 person-years; difference, 2.7/1000 person-years [95% CI, 2.1-3.4]; adjusted HR, 1.55 [95% CI, 1.36-1.77]), respiratory-related events (12.2/1000 person-years vs 6.0/1000 person-years; difference, 6.2/1000 person-years [95% CI, 4.9-7.5]; adjusted HR, 1.90 [95% CI, 1.69-2.14]), and CHD-related events (11.7/1000 person-years vs 7.0/1000 person-years; difference, 4.7/1000 person-years [95% CI, 3.7-5.8]; adjusted HR, 1.30 [95% CI, 1.18-1.42]). Conclusions and Relevance: In a large, population-based sample of US adults, baseline PRISm, compared with normal spirometry, was associated with a small but statistically significant increased risk for mortality and adverse cardiovascular and respiratory outcomes. Further research is needed to explore whether this association is causal.


Assuntos
Volume Expiratório Forçado , Pneumopatias/fisiopatologia , Espirometria , Capacidade Vital , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/etiologia , Feminino , Humanos , Pulmão/fisiopatologia , Pneumopatias/complicações , Pneumopatias/epidemiologia , Pneumopatias/mortalidade , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Estados Unidos/epidemiologia
18.
Sci Rep ; 11(1): 19365, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588469

RESUMO

Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were significantly associated with FEV1. This study investigates the utility of assessing gene-by-smoking interactions and underscores their effects on potential pulmonary function.


Assuntos
Fumar Cigarros/epidemiologia , Volume Expiratório Forçado/genética , Interação Gene-Ambiente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fumar Cigarros/efeitos adversos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Conjuntos de Dados como Assunto , Éxons/genética , Estudos de Viabilidade , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Fatores de Risco
20.
FASEB J ; 35(4): e21323, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710674

RESUMO

We previously reported on the role of pericyte-like cells as functional sentinel immune cells in lung injury. However, much about the biological role of pericytes in lung injury remains unknown. Lung pericyte-like cells are well-positioned to sense disruption to the epithelial barrier and coordinate local inflammatory responses due to their anatomic niche within the alveoli. In this report, we characterized transcriptional responses and functional changes in pericyte-like cells following activation by alveolar components from injured and uninjured lungs in a mouse model of acute lung injury (ALI). Purified pericyte-like cells from lung digests using PDGFRß as a selection marker were expanded in culture as previously described (1). We induced sterile acute lung injury in mice with recombinant human Fas ligand (rhFasL) instillation followed by mechanical ventilation (1). We then collected bronchoalveolar lavage fluid (BALF) from injured and uninjured mice. Purified pericyte-like cells in culture were exposed to growth media only (control), BALF from uninjured mice, and BALF from injured mice for 6 and 24 hours. RNA collected from these treatment conditions were processed for RNAseq. Targets of interest identified by pathway analysis were validated using in vitro and in vivo assays. We observed robust global transcriptional changes in pericyte-like cells following treatment with uninjured and injured BALF at 6 hours, but this response persisted for 24 hours only after exposure to injured BALF. Functional enrichment analysis of pericytes treated with injured BALF revealed the activation of pro-inflammatory, cell migration, and angiogenesis-related pathways, whereas processes associated with tissue development and cell differentiation were down-regulated. We validated select upregulated targets in the inflammatory, angiogenic, and cell migratory pathways using functional biological assays in vitro and in vivo. We conclude that lung pericyte-like cells are highly responsive to alveolar compartment content from both uninjured and injured lungs, but injured BALF elicits a more sustained response. The inflammatory, angiogenic, and migratory changes exhibited by activated pericyte-like cells underscore the phenotypic plasticity of these specialized stromal cells in the setting of acute lung injury.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Proteína Ligante Fas/toxicidade , Pericitos/fisiologia , Transcrição Gênica/fisiologia , Proteína 1 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Ensaios de Migração Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA